If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-186=0
a = 2; b = 6; c = -186;
Δ = b2-4ac
Δ = 62-4·2·(-186)
Δ = 1524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1524}=\sqrt{4*381}=\sqrt{4}*\sqrt{381}=2\sqrt{381}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{381}}{2*2}=\frac{-6-2\sqrt{381}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{381}}{2*2}=\frac{-6+2\sqrt{381}}{4} $
| 3k+1=16 | | 5x-11+14x+8-4x-12=-7x+26 | | 5x+2+3x-18=180 | | 2t−11t−17t−–6t−–3t=17 | | 0.25x=0,x= | | 4p-60=2p | | 1-2x+6x=13 | | 4(5)-4(5+3)=x | | 2x-21+90=180 | | 11h-5h+4h=20 | | -18+6k=7k-1-2 | | 4x+8-2x=1+x | | p=3(1-p)-1/5 | | 7y=–6+10y | | 3(2m-1)=-15 | | 11=7m-4 | | 9x+84=33x+36 | | (x-4)(x+4)=180 | | -1-3w=4w-2w | | -18+6k=7k-1-3 | | 2/3b-1=6 | | 7m+10/2=5 | | 94+(2y-4)=180 | | -48=-5x+27 | | 5/3=c/25 | | -v-1=7+v | | -6(1-6r)=-2(r+2) | | 3(9^x-4×3^(x-1))+1=0 | | x4(x+3)=44 | | n+4=9-9 | | 9-(-3n)=-3 | | 7x+44=16x-46 |